Vestibular feedback maintains reaching accuracy during body movement

نویسندگان

  • Craig P Smith
  • Raymond F Reynolds
چکیده

KEY POINTS Reaching movements can be perturbed by vestibular input, but the function of this response is unclear. Here, we applied galvanic vestibular stimulation concurrently with real body movement while subjects maintained arm position either fixed in space or fixed with respect to their body. During the fixed-in-space conditions, galvanic vestibular stimulation caused large changes in arm trajectory consistent with a compensatory response to maintain upper-limb accuracy in the face of body movement. Galvanic vestibular stimulation responses were absent during the body-fixed task, demonstrating task dependency in vestibular control of the upper limb. The results suggest that the function of vestibular-evoked arm movements is to maintain the accuracy of the upper limb during unpredictable body movement, but only when reaching in an earth-fixed reference frame. ABSTRACT When using our arms to interact with the world, unintended body motion can introduce movement error. A mechanism that could detect and compensate for such motion would be beneficial. Observations of arm movements evoked by vestibular stimulation provide some support for this mechanism. However, the physiological function underlying these artificially evoked movements is unclear from previous research. For such a mechanism to be functional, it should operate only when the arm is being controlled in an earth-fixed rather than a body-fixed reference frame. In the latter case, compensation would be unnecessary and even deleterious. To test this hypothesis, subjects were gently rotated in a chair while being asked to maintain their outstretched arm pointing towards either earth-fixed or body-fixed memorized targets. Galvanic vestibular stimulation was applied concurrently during rotation to isolate the influence of vestibular input, uncontaminated by inertial factors. During the earth-fixed task, galvanic vestibular stimulation produced large polarity-dependent corrections in arm position. These corrections mimicked those evoked when chair velocity was altered without any galvanic vestibular stimulation, indicating a compensatory arm response to a sensation of altered body motion. In stark contrast, corrections were completely absent during the body-fixed task, despite the same chair movement profile and arm posture. These effects persisted when we controlled for differences in limb kinematics between the two tasks. Our results demonstrate that vestibular control of the upper limb maintains reaching accuracy during unpredictable body motion. The observation that such responses occurred only when reaching within an earth-fixed reference frame confirms the functional nature of vestibular-evoked arm movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination between active and passive head movements by macaque ventral and medial intraparietal cortex neurons.

An important prerequisite for effective motor action is the discrimination between active and passive body movements. Passive movements often require immediate reflexes, whereas active movements may demand suppression of the latter. The vestibular system maintains correct body and head posture in space through reflexes. Since vestibular inputs have been reported to be largely suppressed in the ...

متن کامل

Physiology in Press Discrimination between Active and Passive Head Movements by Macaque Intraparietal (vip, Mip) Cortex Neurons Running Head: Active-passive Movement Discrimination by Parietal Neurons

An important prerequisite for effective motor action is the discrimination between active and passive body movements. Passive movements often require immediate reflexes, whereas active movements may demand suppression of the latter. The vestibular system maintains correct body and head posture in space through reflexes. Since vestibular inputs have been reported to be largely suppressed in the ...

متن کامل

Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject.

Reaching for a target while rotating the trunk generates substantial Coriolis and centrifugal torques that push the arm in the opposite direction of the rotations. These torques rarely perturb movement accuracy, suggesting that they are compensated for during the movement. Here we tested whether signals generated during body motion (e.g., vestibular) can be used to predict the torques induced b...

متن کامل

Vestibular Reafference Shapes Voluntary Movement

The vestibular organs in the inner ear are commonly thought of as sensors that serve balance, gaze control, and higher spatial functions such as navigation. Here, we investigate their role in the online control of voluntary movements. The central nervous system uses sensory feedback information during movement to detect and correct errors as they develop. Vestibular organs signal three-dimensio...

متن کامل

State Estimation for Early Feedback Responses in Reaching: Intramodal or Multimodal?

Humans are highly skilled in controlling their reaching movements, making fast and task-dependent movement corrections to unforeseen perturbations. To guide these corrections, the neural control system requires a continuous, instantaneous estimate of the current state of the arm and body in the world. According to Optimal Feedback Control theory, this estimate is multimodal and constructed base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 595  شماره 

صفحات  -

تاریخ انتشار 2017